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Abstract. Chemistry-climate models have developed significantly over the decades, yet they still exhibit substantial system-
atic biases in simulating atmospheric composition due to gaps in our understanding of underlying processes. Building on
deep learning’s success in different domains, we explore its application to correct surface ozone biases in the state-of-the-

art chemistry-climate model UKESMI1. Six statistical models have been developed, and the model Transformer outperforms

5 others due to its advanced architecture. A simple weighted ensemble approach is further proved to enhance performance by
14% over the best single model Transformer, reducing RMSE to 0.69 ppb. Applied to future scenarios (SSP3-7.0 and SSP3-7.0-
lowNTCF), the UKESM1 shows a larger overestimation of ozone changes by up to 25 ppb compared to present-day conditions.
Despite biases, UKESM1 captures the non-linear ozone sensitivity to precursors, with temperature-sensitive processes identi-
fied as a dominant contributor to biases. We highlight that simulations of future surface ozone are likely to become less accurate

10 under a warmer climate. Therefore, the bias correction approaches introduced here have substantial potential to improve the
accuracy of ozone impact assessments. These methods are also applicable to other chemistry-climate models, which is critical

for informing air quality and climate policy decisions.

1 Introduction

Global chemistry-climate models are vital for simulating atmospheric composition and its changes by representing the relevant
15 physical and chemical processes in the atmosphere. However, these models face challenges in accurately reproducing observed
concentrations of short-lived species, such as ozone (O3). Global models typically have coarse spatial resolution, and this
limitation hampers the representation of small-scale processes, leading to systematic biases in simulations (Stock et al., 2014;
Fenech et al., 2018). There are currently no simple methods to address these issues effectively without increasing model
resolution. However, higher resolution significantly increases computational demands. Besides, increasing model resolution

20 does not consistently improve accuracy, sometimes even introducing new biases (Wild and Prather, 2006; Iles et al., 2020).



25

30

35

40

45

50

https://doi.org/10.5194/egusphere-2025-1250
Preprint. Discussion started: 10 June 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

Moreover, evaluating model performance is challenging due to uncertainties in comparing grid-scale outputs with localized,
site-based measurements (Schultz et al., 2017).

Considering these issues, surface ozone simulations in current global chemistry-climate models exhibit notable biases, par-
ticularly at regional scales (Turnock et al., 2020). Although large-scale ozone distributions are generally well-captured (Fleming
et al., 2018; Griffiths et al., 2021), regional ozone concentrations remain challenging to reproduce, especially at the surface
where precursor emissions and surface deposition exert strong influences. The assessment of the Tropospheric Ozone Assess-
ment Report (TOAR) also reported that global models exhibit systematic biases in their surface ozone simulations across all
seasons, with a multi-model mean bias of 7.7 ppb (approximately a 20% overestimation) in the Northern Hemisphere (Young
et al., 2018). These biases may stem from inadequate representation of dynamics (e.g., meteorology and deposition), and
oversimplified ozone chemistry (Archibald et al., 2020a). However, efforts to improve individual modules, such as chemistry
schemes, can even result in greater biases in ozone simulation (Archer-Nicholls et al., 2021). Progress in addressing these
issues has been limited over recent decades (Revell et al., 2018; Wild et al., 2020).

Deep learning, a transformative approach in fields like computer vision and natural language processing (LeCun et al.,
2015), is increasingly applied in physical science (Reichstein et al., 2019). Recent studies have demonstrated its growing use in
atmospheric science. It has shown promise in weather modeling and data generation. Specific applications include mimicking
atmospheric photochemical processes (Xing et al., 2022), and directly predicting future weather (Bi et al., 2023; Lam et al.,
2023), often outperforming traditional numerical methods in speed and accuracy. The uncertain parameterizations e.g., moist
physics and radiation processes in climate models can also be replaced by deep learning models (Wang et al., 2022). Another
key advantage of deep learning is its ability to fuse multi-source data, enabling the creation of global datasets, such as surface
ozone concentrations (Betancourt et al., 2022). However, its application to air pollution modeling, particularly for ozone, is
challenging due to the localized nature of pollution and limited observational data for key variables. To address this, we adopt
a hybrid approach, integrating process-based chemistry-climate models with deep learning to improve the accuracy of ozone
simulations.

In this study we investigate the potential of deep learning to correct surface ozone biases in a global chemistry-climate model.
In Section 2, we describe the chemistry-climate model and introduce six statistical models used for bias correction. Section 3
evaluates their performance and proposes a weighting scheme to optimize results. Section 4 demonstrates the advantages of
this approach for projecting future surface ozone changes. In Section 5, we analyze the sensitivity of ozone in both the original

and bias-corrected models. Finally, Section 6 presents our conclusions.
2 Approach

2.1 Chemistry—climate model and experiments

We use version 1 of the United Kingdom Earth System Model (UKESM1; Sellar et al. (2019)) to simulate present-day
(2004-2014) and future (2045-2055) surface O3 mixing ratios under different emission and climate scenarios. UKESM1
incorporates a physical climate model, the Hadley Centre Global Environment Model version 3 (HadGEM3), configured with
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the Global Atmosphere 7.1 and Global Land 7.0 (GA7.1/GL7.0; Walters et al. (2019)). Chemistry is simulated using the
state-of-the-art United Kingdom Chemistry and Aerosol module (UKCA; O’Connor et al. (2014)), which includes a unified
stratosphere—troposphere gas-phase chemistry scheme (StratTrop; Archibald et al. (2020b)). In this study, an extended version
of this chemistry scheme incorporating additional reactive volatile organic compounds (VOCs) is employed to improve the rep-
resentation of Oz production (Liu et al., 2021). The model resolution is N96L85 in the atmosphere, with 1.875° in longitude
by 1.25° in latitude, 85 terrain-following hybrid height layers, and a model top at 85 km.

In our present-day simulations (2004-2014), we use anthropogenic (Hoesly et al., 2018) and biomass (Van Marle et al.,
2017) emissions from the Coupled-Model Intercomparison Project Phase 6 (CMIP6; Eyring et al. (2016)). Biogenic VOC
emissions are calculated online in the Joint UK Land Environmental Simulator (JULES) land-surface scheme (Eyring et al.,
2016). For future simulations (2045-2055), we use the shared socio-economic pathways (SSP; O’Neill et al. (2014)), which
represent various trajectories for emission and climate policies, considering social, economic and environmental development
(Rao et al., 2017). We select the SSP3-7.0 and SSP3-7.0-lowNTCF pathways to illustrate the effects of weaker and stronger
air pollutant emission controls, respectively. Both pathways anticipate a warmer and more humid climate, although SSP3-
7.0-lowNTCEF includes significant reductions in anthropogenic emissions of near-term climate forcers (NTCF), such as Og
precursors and aerosols. Details of the present-day and future emissions under SSP3-7.0 and SSP3-7.0-lowNTCEF are provided
in Liu et al. (2022b). Other emissions, including sea salt, dust, and lightning NO,,, are the same as those used in UKESM 1
simulations for CMIP6 (Turnock et al., 2020). The atmosphere-only configuration of UKESM1 is applied with prescribed sea

surface temperatures and sea ice to examine the transient impacts of emissions under present-day and future climates.
2.2 Six approaches for O3 bias correction

Surface ozone concentrations are typically underestimated in winter and overestimated in summer when simulated with
UKESM1 (Archibald et al., 2020b). The biases with consistently high values across all seasons, are also observed in other
chemistry-climate models used in CMIP6 (Young et al., 2018; Turnock et al., 2020). However, the underlying reasons for these
biases in each model remain unclear. Our goal is to correct these biases directly through deep learning.

As an appropriate reference Og dataset for correcting O3 simulated with UKESM1, we consider surface O3 reanalysis data
from the European Centre for Medium-Range Weather Forecasts (ECMWF) Atmospheric Composition Reanalysis 4 (EAC4)
under the Copernicus Atmosphere Monitoring Service (CAMS; Inness et al. (2019)). One advantage of the CAMS reanalysis
is its better agreement with TOAR O3 observations, exhibiting mean seasonal biases of about 3 ppb, notably lower than the
biases of up to 16 ppb in UKESMI1 at locations where TOAR observations are available (Turnock et al., 2020). A comparison
and evaluation of UKESM1, CAMS, and TOAR has been conducted in Liu et al. (2022a). In addition, the spatial scale of
these data closely aligns with the output of UKESM1, thereby mitigating uncertainties related to the spatial representativeness
of sparse observations. We note that the large volume of the dataset, providing global coverage, is crucial for training deep
learning models. While there are still biases in the CAMS reanalysis, it provides a useful benchmark for demonstrating the
feasibility of bias correction, and could be replaced by a measurement-based surface O3 climatology if this becomes available

in future.



90

95

100

105

https://doi.org/10.5194/egusphere-2025-1250
Preprint. Discussion started: 10 June 2025 EG U
i sphere

(© Author(s) 2025. CC BY 4.0 License.

Here we apply six approaches to calculate surface O3 biases. Fig. 1 illustrates the increasing complexity of these methods
from left to right, starting with multiple linear regression (MLR), random forest (RF), multilayer perceptron (MLP), convo-
lutional neural network (CNN), residual network (ResNet) and Transformer. MLR is a linear method, while RF transforms
linear processes into nonlinear ones through decision tree-based layers. MLP forms the basis of deep learning, incorporating
a feed-forward neural network (FFN). CNN uses convolutional operators as encoders, which are particularly effective for pro-
cessing two-dimensional data, such as images. ResNet is an architecture that enables the training of deep learning models with
multiple layers, addressing challenges that were prevalent during the early development of deep learning (He et al., 2016). The
Transformer, a more recent architecture, demonstrates strong capabilities in processing long-sequence tasks, such as natural

language understanding, with its core functionality driven by the Attention mechanism (Vaswani et al., 2017).

Features (1x1) Features (1x1) Features (1x1) Feature maps (9x9) Feature maps (9x9)  Feature maps (9x9)
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Figure 1. The architectures of MLR, RF, MLP, CNN, ResNet and Transformer applied in this study for calculating surface O3 biases. Each
diagram illustrates the workflow, beginning with the input of features to the prediction of O3 biases. MLR, RF, and MLP receive input

features from a single model grid cell (1x1), whereas the remaining models process features from a 9x9 block of grid cells.

We assume that UKESM1 exhibits systematic biases that are associated with other self-generated variables. The main vari-
ables relevant to ozone production and transport are selected as follows (Liu et al., 2022a). We use 20 physical, meteorological,
and chemical variables as features, including location, season, temperature, humidity, wind speed, photolysis and deposition
rates, and concentrations of key precursors. For MLR, RF, and MLP, the features and O3 biases corresponding to the same
model grid cell are used to train the different approaches. For the methods designed to process 2D data, input pairs consist of
a 9x9 grid cell patch centered around the grid cell where O3 biases are to be calculated. We also calculate the ensemble mean
of all models to optimize predictions.

The feature data are obtained from UKESMI1 simulations, and surface O3 biases are derived from the differences between
UKESMI1 simulations and the CAMS reanalysis. Monthly mean Os mixing ratios from the lowest layer in UKESMI are
used. The dataset is split into 80% for training, 10% for validation, and 10% for testing, with approximately 2.9 million data
samples used for model training. We choose mean absolute error as the loss function and AdamW as the optimizer to minimize
it. To increase model regularization, a weight decay value of 0.001 is applied to constrain the size of parameter weights. The

initial learning rate is set to 0.01, with a cosine annealing schedule for dynamic adjustment of learning rates to improve training
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(Loshchilov and Hutter, 2016). As the complexity of models increases, so does the number of parameters; however, we limit the
number of trainable parameters in our most complex model, the Transformer, to 9 million to manage computational resources.

The Transformer requires approximately 8 hours to converge on a single GPU (RTX 3090 Ti).

3 Statistical model evaluation and the weighting scheme

The performance of all 6 statistical models is evaluated using testing data to give an independent assessment, see Fig. 2. All
models generally simulate the surface ozone biases in UKESMI1 effectively, capturing both underestimations and overestima-
tions. However, the deep learning models (Fig. 2c—f) clearly outperform the simpler linear and random forest models (Fig. 2a,
b). A primary limitation of the linear and random forest models is their inability to capture extreme bias values, with many
predictions clustering around O ppb. Overall, the systematic biases are smoothly distributed with a mean near 0, indicating that
underestimations and overestimations occur with comparable frequency in UKESM1.

Both the ResNet and Transformer approaches perform best, with their predictions closely aligning with the 1:1 line across
the full range of biases. These models yield higher correlation coefficients (up to 0.997) and lower root-mean-square errors
(RMSE). From MLP to Transformer, the error is reduced by 64% from 2.25 ppb to 0.8 ppb, highlighting the importance of
architecture in this task. However, the improvement from convolution-based models (CNN and ResNet) to the Transformer is
marginal. In the deep learning field, the optimal architecture for processing 2D data, whether convolution-based or attention-

based, remains a subject of ongoing debate (Smith et al., 2023).
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Figure 2. Evaluation of the models’ performance in simulating monthly mean surface O3 biases at each UKESM1 grid point, based on
testing data. (a) Surface O3 biases (UKESM1 minus CAMS) and biases predicted by the models. (b) Probability density function of surface

O3 biases (labelled as “Reference”) and the predicted O3 biases. Statistics are shown in the top-right corner of each panel.

Given that we employ a variety of models, it is logical to consider combining them to reduce the uncertainties inherent

in each. Previous studies have demonstrated that integrating multiple models can effectively decrease both uncertainties and
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Figure 3. RMSE of the weighted-mean model in simulating surface O3 biases as a function of the tuned parameter o. The best-performing
single model, Transformer, is indicated for comparison. The weights assigned to each model corresponding to the optimal value of o are

provided in the text.

prediction errors (Stevenson et al., 2006). However, assigning weights to each model based on their respective performances
can produce a more robust outcome compared to simple averaging (Amos et al., 2020). Therefore, we adopt a simple weighted
ensemble mean scheme, following the approach outlined by Amos et al. (2020). The calculation of the weights for each model

1 is presented as follows:
2
exp (—%) x 100
2
> eXp (_ NL:;Q )

Here, D? represents the squared error between the predictions of an individual model and the reference data, derived from the

w; =

6]

testing data. IV; denotes the number of testing data points. The parameter o is adjustable and can be optimized to determine
the most effective weight values. As illustrated in Fig. 3, the error of the weighted-mean model is lower than that of any
single model, including the best-performing single model, Transformer, which exhibits an error of 0.80 ppb. The optimal value
of o =0.35 corresponds to the lowest error of the weighted-mean model (0.69 ppb), resulting in a 14% improvement over
the Transformer model. We note that the optimal value of o may differ across various model ensembles. High-performing
models, such as ResNet and Transformer, are assigned large weights, approximately 40% each, while the CNN model has a
weight of 17%. Models with low performance are excluded due to their limited contribution. This demonstrates that a simple
weighting scheme can effectively integrate the outputs of all models, and further improve prediction accuracy. The optimal

weighted-mean predictions are used for subsequent analyses.



145

150

155

https://doi.org/10.5194/egusphere-2025-1250
Preprint. Discussion started: 10 June 2025 EG U
sphere

(© Author(s) 2025. CC BY 4.0 License.

4 TImproved assessment of future changes in surface O3

Considering the expected biases in future simulations of surface O3 using UKESM1, we employ deep learning models to predict
these biases based on input variables generated from UKESMI1 future simulations. Subsequently, a bias-corrected surface O3
concentration is derived by subtracting the Og bias from the simulated O3 values. Fig. 4 illustrates seasonal variations in
weighted-mean surface O3 concentrations under SSP3-7.0 and SSP3-7.0-lowNTCF scenarios. Compared with bias-corrected
results, UKESM1 simulations demonstate much higher global mean O3 concentrations in summer and similar levels in winter
(Fig. 4a-d). This indicates that the UKESMI1 has a greater sensitivity of seasonal O changes due to unknown reasons. Higher
emissions of Og precursors under SSP3-7.0 lead to higher surface O3 mixing ratios compared to SSP3-7.0-lowNTCEF, with
differences of 4 ppb in summer and 1.5 ppb in winter (Fig. 4e-h). In addition, seasonal O3 variation (winter to summer)
becomes more pronounced under SSP3-7.0 (4.4 ppb increase; Fig. 4e, f) than under SSP3-7.0-lowNTCF (2.0 ppb increase;
Fig. 4g, h), which is also observed in UKESM1 simulations. Decreased Oj titration by NO in winter and lower photochemical

O3 production in summer in the lower-emission scenario will both contribute to a reduced seasonal variation.
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Figure 4. Comparison of UKESM1 simulated surface O3 mixing ratios (a—d) with weighted-mean bias-corrected results (e-h), and bias-
corrected Oz changes (i-1) from present day (PD; 2004-2014) to future (2045-2055) under SSP3-7.0 and SSP3-7.0-lowNTCF scenarios.
Shown for June-July-August (JJA) and December-January-February (DJF), with hatched regions denoting where the sign of bias-corrected
O3 changes differs from those simulated with UKESM1. Global area-weighted mean mixing ratios are shown in the top-right corner of each

panel.

Fig. 4i-1 shows the changes in surface O3 from the present day to the future, as simulated by the bias-corrected weighted-
mean model. It reveals that distinct emission pathways result in divergent O3 responses. Under SSP3-7.0, surface O3 mixing

ratios exhibit a consistent increase across both seasons, whereas under SSP3-7.0-lowNTCEF, a decrease is simulated. However,
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the magnitude of Os responses is greater under SSP3-7.0-lowNTCF compared to SSP3-7.0. At regional scales, substantial
reductions in surface O3 are shown in North America during summer (Fig. 4i and 4k), attributable to lower precursor emissions
in both scenarios. In contrast, in East Asia, surface O3 changes vary markedly between scenarios and seasons, driven primarily
by differing O3 chemical environments due to the current high local emissions. These variations pose significant challenges
for addressing regional air pollution. Additionally, we compare surface Oz changes with and without bias correction. While
the direction of surface O3 changes remains generally consistent across most continental regions, opposing signs emerge in
certain oceanic areas. This discrepancy may stem from the limited availability of observational constraints in oceanic regions,
which hinders both the development of process-based models and the reliable reference data for bias correction. Overall, the
influence of different emission pathways on future O3 concentrations are certain at large scales, particularly over land areas.

In Fig. 5, we further show regional surface O3 changes from the present day to the future, and compare the predictions of
UKESMI with those derived from the bias-corrected weighted-mean model. Under both future scenarios, surface O3 changes
in most geographical regions fall in quadrants where the signs of the changes are the same, indicating that the effects of
emission changes on future O3 are generally robust. However, in the wintertime, there are differences in sign, especially in
high-emission regions such as Asia (Fig. 5a and b) and North America (Fig. 5b). This suggests that the response of Og to its
precursors, particularly in high-NO,, environments in winter is not well represented in current models. In contrast, there is
broad agreement in the sign of O3 changes in the summertime.

While the sign of O3 changes is generally consistent between UKESM1 simulations and bias-corrected predictions, the mag-
nitudes of these changes differ substantially. Under the SSP3-7.0 scenario (Fig. 5a), surface Og increases in most regions are
greater in UKESM1 simulations than in bias-corrected estimates, with notably larger overestimations in regions such as North
America and Europe during winter, where UKESM1-simulated increases exceed bias-corrected values by more than a factor
of 2. This suggests that UKESM1 may overestimate surface Os increases. Similarly, under the SSP3-7.0-lowNTCF scenario
(Fig. 5b), surface O3 decreases in most regions are less pronounced in bias-corrected predictions compared to UKESM1 sim-
ulations, indicating an overestimation of O3 reductions by UKESM1. These findings imply that the impacts of emission and
climate policies on surface O3 concentrations under both scenarios may be smaller than projected by UKESM1 simulations.

It is acknowledged that large uncertainties remain in these comparisons at regional scales, as the CAMS dataset exhibits
substantial biases in certain regions when compared to the TOAR dataset, particularly in East Asia and Southeast Asia (Huijnen
et al., 2020). In addition, we also find that there are notable discrepancies between CAMS and UKESM1 especially in regions
where observations are unavailable, such as the Middle East (shown as light markers in Fig. 5). Therefore, in these regions
exhibiting large biases in UKESM1 simulations, large differences in surface Os predictions between UKESMI1 and bias-
corrected UKESM1 also tend to be observed. Bias correction in these regions may lack reliability. Nevertheless, in North
America and Europe, where the CAMS data are more consistent with TOAR observations, with biases of less than 10%
(Huijnen et al., 2020), the overestimation of surface O3z changes by UKESM1 appears more substantiated.

At the global scale, it is evident that UKESM1 simulations consistently overestimate surface O changes during summer
(Fig. 6a). In summer, surface O3 biases peak at approximately 15-30 ppb for NO, mixing ratios of 10-15 ppb, typically
corresponding to polluted urban areas with large populations (Kephart et al., 2023). The SSP3-7.0 scenario exhibits the largest



195

200

https://doi.org/10.5194/egusphere-2025-1250
Preprint. Discussion started: 10 June 2025 EG U h
© Author(s) 2025. CC BY 4.0 License. spnere

10 SSP370 - PD 6 SSP370_lowNTCF - PD
(a) (b)

s g 2:1 line = 2:1 line.” 1:1 line
5 < 5 * g e
£ © v £ 2 * A 12
g g . .
3 : 3
T 4 11 “_’1‘? = 0
=] =]
E E
» - »
= 2 1.? line| 5 -2
o - [e%
e e
3 3
o 0 o 4
C C
© ©
< <
(3] (3]
S-2 S 6
[0] [0]
[$] [$]
8 8
5 -4 S -8
(7} (7}

€5 4 0 5 4 B — 2 0 2 2

Surface O3 changes (ppb) corrected by deep learning Surface O3 changes (ppb) corrected by deep learning
HEl Summertime @® Gilobe A South America @ North Africa ¢ South Asia
JJA W Ocean V¥ Central America » Middle East ® Central Asia
I Wintertime % Europe ® Pacific Aus Nz <« South East Asia @ Russia Bel Ukr
DJF 8 North America ® South Africa * East Asia

Figure 5. Seasonal changes in surface O3 mixing ratios (in ppb) under (a) SSP3-7.0 and (b) SSP3-7.0-lowNTCEF scenarios in different global
regions, comparing bias-corrected changes with those from UKESM1 simulations. The error bars represent one standard deviation of the
surface O3 changes in the specified region. Markers in light colors denote regions where the magnitudes of biases in UKESM1 present-day

simulations rank among the top three for the respective seasons.

biases, followed by SSP3-7.0-lowNTCF. Both future scenarios, characterized by high or low emissions, show greater biases
(up to 25 ppb) than the present-day scenario, suggesting that emissions are not the primary driver of these larger biases. In
contrast, during winter (Fig. 6b), O3 biases are generally lower. The SSP3-7.0 and SSP3-7.0-lowNTCF biases appear to shift
from negative values in the present day to positive or near-zero values. These findings indicate that the underlying biases in
surface O3 simulations are likely to increase under both emission pathways in the future, presenting a challenge to accurately

assessing the impacts of future emissions, particularly during summer.

5 Sensitivity analysis of surface O3 and O3 biases

Given that the chemical environment affects both the magnitude and sign of surface O3 changes, it is important for models
to accurately represent the non-linear responses of surface Og to its precursors. We integrate monthly mean data from all

surface grid cells in both scenarios to derive a relationship between surface O3 mixing ratios and NO,/VOC ratios as simulated
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Figure 6. Surface O3 biases derived from the weighted-mean statistical models for the present day, SSP3-7.0 and SSP3-7.0-lowNTCF
scenarios during (a) summer (JJA) and (b) winter (DJF). The biases are presented as a function of the corresponding surface NO, mixing

ratios (in ppb). The error bars represent one standard deviation of the O3 biases within each NO,, bin.

by UKESMI, see Fig. 7. Additionally, we show the O3 sensitivity to the NO,/VOC ratio using bias-corrected O3 data for
comparison. The NO,/VOC ratio is a simple but effective indicator that distinguishes high- and low-NO,, environments, which
reflect different O3 chemical regimes (Liu et al., 2022b). We calculate NO,, concentrations by aggregating NO and NO, values,
and VOC concentrations are calculated by summing the concentrations of all primary emitted non-methane VOC species.

We find that the NO,/VOC ratios corresponding to the peaks of surface O3 concentrations are similar between corrected
and uncorrected UKESM1 across different seasons (Fig. 7). The NO,/VOC ratio thresholds, which indicate the transition
from NO,-limited to VOC-limited O3 production regimes, are higher in summer (1.0-2.0) than in winter (about 0.1). This
demonstrates that UKESM1 effectively captures the seasonal variation in critical NO,/VOC ratios. The chemical mechanism
of UKESMI1 accurately represents this transition. In addition, we see that as the NO,/VOC ratio increases, the differences
between corrected and uncorrected surface Og concentrations become more pronounced in summer, but this is less apparent in
winter. This suggests that biases in O3 simulations are amplified under two specific conditions: (1) in regions with high NO,,
levels, such as polluted environments, and (2) in warmer climates, such as during summer. It is noteworthy that NO,/VOC
thresholds may vary across different chemistry-climate models; however, analyzing O3 sensitivity to these ratios provides
valuable insights into model limitations.

We further investigate the sensitivity of surface O3 biases to different input variables in the statistical models, usually

termed the “feature importance”, see Fig. 8. This is calculated as the response of the O3 bias to a minor perturbation (10%)
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The relationship between surface O3 and NO,/VOC
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Figure 7. Relationship between surface O3 mixing ratios and the NO,/VOC ratio in different seasons, as simulated by UKESM1 and bias-

corrected UKESM1. Vertical lines denote the NO,/VOC ratio values corresponding to the maximum surface O3 concentrations.

in each variable, then normalized across all variables and expressed as a percentage. Fig. 8 shows the feature importance
of the eight most influential variables. It reveals that temperature is the primary contributor to O3 biases, associated with the
overestimation of O3 in summer, as demonstrated in Fig. 7. While other variables also play a role, their impacts are substantially
less pronounced than that of temperature. This suggests that temperature-sensitive processes are likely the dominant source of
O3 biases in the model.

Other physical variables, including photolysis rates, humidity, boundary layer height and dry deposition, are also associated
with surface O3 biases. Chemical species such as hydroxyl radicals (OH) and peroxyacetyl nitrate (PAN), which are linked
to the oxidation of O3 precursors and regional transport, play a notable role in influencing these biases. While deep learning
models highlight the importance of these variables, simpler statistical models, such as MLR and RF, show little sensitivity to
them. This suggests that simpler models tend to overemphasize the most dominant variables, whereas complex models may
overdistribute feature importance across a broader range of variables. Furthermore, we find that the positive or negative values
of feature importance are generally consistent with physical expectations. For example, an increase in the NO, photolysis
rate, j(NO3), enhances O3 production and tend to result in higher O3 biases, which is hence reflected by the positive feature
importance of j(NOs). In contrast, an increase in the O(!D) photolysis rate, j(O;D), promotes O3 destruction and leads to

lower O3 biases, which is reflected by its negative feature importance. Although MLR and RF models fail to capture these
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nuanced relationships, they remain useful for identifying the most influential variables. We highlight that the underlying causes
of O3 biases are complex; however, temperature consistently emerges as the dominant factor, potentially exerting a significant

influence on the accuracy of O3 simulations under future warmer climate conditions.

s MLR
60 - RF
MLP
CNN
40 I  ResNet

Il Transformer

20

0- .ﬁ_l—.rlJLkL

Feature importance (%)

o 3ev°

Figure 8. The importance of different input features to surface O3 biases in each statistical model.

6 Conclusions

We have successfully applied a range of statistical approaches to correct surface O3 biases in UKESMI1, a state-of-the-art
chemistry-climate model. This model typically overestimates surface O3 concentrations in summer and underestimates them
in winter. While these model biases can be corrected using any of the statistical approaches, deep learning models significantly
outperform traditional approaches such as multiple linear regression (MLR) and random forest (RF). Among the deep learning
architectures, the residual network (ResNet) and Transformer models yield consistent results, with small differences between
them. The convolutional neural network (CNN) also produces comparable predictions to ResNet and Transformer. We note
that while complex models generally achieve higher prediction accuracy, the full potential of the Transformer architecture may
not be fully realized in this task due to the specific nature of the task.

A simple weighted ensemble mean scheme is proposed, demonstrating an additional 14% improvement in performance
compared to the best individual approach, the Transformer model. To assess future changes in surface O3, we apply bias
correction to simulations generated by UKESM1. The signs of surface O3 changes are generally consistent between corrected
and uncorrected UKESM1. However, the magnitudes of these changes differ. Surface O3 changes simulated by UKESM1 are

typically overestimated in both seasons compared to the bias-corrected changes. Under the SSP3-7.0 scenario, the corrected
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global summer mean O3 mixing ratios are projected to increase by 1.2 ppb, whereas under the SSP3-7.0-lowNTCF scenario,
they are expected to decrease by 2.8 ppb. In winter, the corrected surface O3 mixing ratios are projected to increase by 0.5 ppb
under SSP3-7.0 and to decrease by 1.1 ppb under SSP3-7.0-lowNTCEF.

The sensitivities of surface O3 to its precursors are also investigated for both UKESM1 and the bias-corrected UKESM1. It
reveals that UKESM1 effectively captures the seasonal differences in Og sensitivities, as represented by NO,/VOC ratios in
different seasons. However, under high NO,/VOC conditions, UKESM1 notably overestimates Og concentrations, particularly
during summer. This suggests that under warmer conditions in the future, UKESMI1 tends to overestimate O3 concentrations.
This is further confirmed by examining the feature importance for simulated O3 biases, which identifies temperature as the most
important variable influencing these biases. Deep learning models also highlight the importance of other variables; however,
their importance is considerably less substantial than that of temperature. This suggests that processes sensitive to temperature
variations may have a pronounced influence on O3 concentrations simulated by UKESMI.

Despite the demonstrated capabilities of deep learning models in capturing surface O3 biases, we acknowledge that uncer-
tainties remain, particularly regarding the use of CAMS data as a reference for model training. Nevertheless, this exploratory
study tests the methodology’s feasibility and provides insights into mitigating uncertainties associated with approach selection.
It establishes a robust foundation for the broader application of bias correction techniques, particularly through the integra-
tion of deep learning with chemistry-climate models. This integration presents a promising pathway for addressing systematic
errors in chemistry-climate models, while also facilitating the diagnosis of the underlying causes of model biases. Bias correc-
tion techniques stand to gain from the increasing availability of high-quality observational data, with applications extending
beyond O3 to other atmospheric components. This will strengthen the robustness of assessments in regions where observations

are currently lacking, ultimately producing more reliable projections of O3 changes across different climate scenarios.
Data availability. The data generated in this study are available upon request.
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